Using 3D Printing Technology to Recreate Historically Accurate Teaching Models from the 1800s
Carrie Caldwell, Adrienne Shea, Nicole Bodi and J.D. Mendez
Indiana University – Purdue University Columbus, Division of Science, 4601 Central Ave., Columbus, IN 47203

Introduction
- 3D printing provides endless possibilities to innovate, create, and modify how learning can take place in a classroom.
- 3D models are easy to produce and edit, and allow room for initial error.
- It is an effective way of allowing students to transform their ideas into actions.
- Learning about crystal structures are often too abstract for introductory chemistry students to grasp.
- Our goal is to grow crystals and 3D print to model the complex equations that create major crystalline lattice structures.
- These particular models can be used by introductory or higher chemistry courses for visual and hands on learning.
- The seven major crystal lattice systems include cubic, tetragonal, orthorhombic, hexagonal, trigonal, triclinic, and monoclinic.

Crystal Growing Process
- First, a saturated mother liquor is made based on the solubility of the ionic compound.
- Once the mother liquor is super saturated, seed crystals will begin to deposit on the bottom and sides of the beaker.
- Next, a seed crystal is suspended in the saturated solution using fishing line. Saturation of the solution and rate of evaporation both need to be monitored throughout this step.
- Finally, the crystals are sealed in resin to prevent dehydration and prepare them to be handled by students.

3D Printing
- 3D printing allows for the rapid design and manufacture of prototypes at a relatively low cost.
- Depending on the size, a model can take ten minutes to two hours to be completely printed. For these models, the longest print was over four hours!
- This process works by heating thin plastic to 230°C and extruding filament onto a 90°C platform.
- There are many different types of 3D printers and they can vary in cost, but once the initial costs are paid, the cost of printing is relatively low.

D Printed Models

Finished Models
- Print time for each ranged from one hour to anywhere upwards of three hours depending on the design’s complexity.
- Extruder heated to 210°C
- Printed with the Creator Pro and XYZ printers and accompanying software
- Included structures such as:
 - Octahedron
 - Rhombic Pyramid
 - Hexagonal Prism
 - Pentagonal Dodecahedron

Happy Little Accidents
- Things don’t always go as planned. Although these specimens are not useful as teaching tools, they are still interesting and demonstrate varieties of crystal structures.

Selected References

Acknowledgements
The authors would like to thank IUPUC’s Office of Student Research for providing the funding necessary for our research, as well as Baird Travel Fund.